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Abstract: Compositionally graded cylinders of Ti–Mn alloys were produced using the Laser
Engineered Net Shaping (LENS™) technique, with Mn content varying from 0 to 12 wt.% along the
cylinder axis. The cylinders were subjected to different post-build heat treatments to produce a large
sample library of α–β microstructures. The microstructures in the sample library were studied using
back-scattered electron (BSE) imaging in a scanning electron microscope (SEM), and their mechanical
properties were evaluated using spherical indentation stress–strain protocols. These protocols
revealed that the microstructures exhibited features with averaged chord lengths in the range of
0.17–1.78 µm, and beta content in the range of 20–83 vol.%. The estimated values of the Young’s
moduli and tensile yield strengths from spherical indentation were found to vary in the ranges of
97–130 GPa and 828–1864 MPa, respectively. The combined use of the LENS technique along with the
spherical indentation protocols was found to facilitate the rapid exploration of material and process
spaces. Analyses of the correlations between the process conditions, several key microstructural
features, and the measured material properties were performed via Gaussian process regression (GPR).
These data-driven statistical models provided valuable insights into the underlying correlations
between these variables.

Keywords: high-throughput experimentation; additive manufacturing; Ti–Mn alloys; spherical indentation;
statistical analysis; Gaussian process regression

1. Introduction

Modern metal additive manufacturing (AM) processes provide greatly expanded opportunities
for producing engineered components possessing intricate geometries, novel material chemistries and
internal structures. Furthermore, it is possible to tailor the material internal structures (hereafter simply
referred to as microstructures) at different locations in the component both during the actual AM
process and in subsequent (post-build) heat treatments in the effort to optimize its overall in-service
functional performance [1–7]. Over the years, AM processes have been applied successfully in metal
products with demonstrated benefits in net shaping, component repair, intricate geometry prototyping
and component customization [8–15]. Although both experiments and physics-based multiscale
material simulations have the potential to offer the data needed to gain insights into the correlations
between the processing conditions and microstructure as well as the associated properties, our focus
in this work was confined to experiments. This is mainly because the multiscale material models for
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AM metal alloys are still largely under development [16–19]. The AM process usually consists of
multiple steps, including substrate treatment, powder delivery, energy delivery, nozzle movement
and post-build heat treatments [20–24]. Each of these process steps involves the selection of multiple
parameters that could significantly influence the local thermal history and, thereby, the microstructure
and associated properties. The central challenges encountered in the experimental exploration of
the influence of AM processing conditions and material microstructure come from two main gaps in
current capabilities in the field. First, there is a lack of validated high-throughput experimental assays
that are cost-effective and require only small amounts of material in different conditions (e.g., a range
of chemical compositions and process histories). Second, there is also a lack of established approaches
capable of building reliable data-driven process–structure–property (PSP) linkages from limited data
(i.e., a relatively small number of data points). This is particularly important for AM metal alloy
development using experimental assays, because it is unlikely that one can accumulate the very large
datasets needed by conventional machine learning approaches such as neural networks [25–28].

A number of different experimental protocols have been explored in recent literature for the rapid
formulation of PSP linkages from experiments in metal AM [29–32]. The central challenges come from
the need to prototype a large library of samples spanning the large ranges of chemistries and process
histories relevant to metal AM, and subsequently characterizing their microstructures and mechanical
properties. In this respect, it should be noted that AM inherently offers many advantages in prototyping
libraries of samples with small volumes. Previous studies [32–35] have demonstrated the feasibility
of manufacturing compositionally and functionally graded materials with microstructural gradients
using a selective laser-melting technique. Similarly, Joseph et al. [36] demonstrated the feasibility of
exploring the vast compositional space of high-entropy alloys (HEAs) using the direct laser-fabrication
technique. Beyond the prototyping of the sample libraries, one also needs to address the challenges in
the high-throughput characterization of the samples. It is important to note that the characterization
should include both details of the material microstructures and their mechanical properties in order to
meet our target of extracting PSP linkages that can accelerate material innovation for AM. In recent
work, Saltzbrenner et al. [31] have demonstrated the viability of prototyping miniaturized tensile test
specimens and conducting high-throughput tests in automated protocols. Although this approach has
tremendous potential, in practice, it is often challenging to extract reliable and consistently reproducible
mechanical properties because of the large heterogeneity exhibited by the AM samples. Since tensile
testing requires a statistically homogeneous material condition in the entire gauge section for the
successful evaluation of mechanical properties, any significant variation in the local thermal histories
at different locations of the gauge section of the tensile test specimen can lead to a large variance in the
values of the measured mechanical properties from such measurements. For AM samples, there is
a critical need to explore other characterization methods that can evaluate mechanical properties in
small material volumes without the need to make standardized tensile test samples.

In recent work [37], it was demonstrated that it is possible to prototype compositionally graded
AM samples and characterize their mechanical properties using the stress–strain analysis protocols
based on spherical indentation. This strategy appears to exhibit tremendous potential for the
high-throughput extraction of the relationships between the processing conditions, microstructural
features and properties [38,39]. Although this strategy has produced reliable data points, the size
of the dataset (i.e., the number of data points obtained) is still rather small for the extraction of
PSP linkages using emergent machine learning techniques. In this paper, we demonstrate novel
workflows that extend significantly the previously demonstrated assays in multiple research directions:
(i) the prototyping of a much larger library of AM Ti–Mn alloys employing intentionally induced
compositional gradients coupled with different post-build heat treatments, and (ii) the use of data-driven
model-building strategies such as Gaussian process regression (GPR) [40–46] for extracting practically
useful correlations from experimental datasets. GPR offers many potential advantages compared
to other machine learning approaches, including the ability to utilize smaller data sets (i.e., smaller
numbers of data points) [42,44], rigorous treatment of uncertainty [47,48] and dynamic selection
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of new experiments that maximize the expected information gain [49–51]. This work explores and
demonstrates a framework for high-throughput experimental assays to facilitate the efficient exploration
of the AM process space as well as statistical analyses of the accumulated data using GPR approaches.

2. Methods

2.1. Experiments

Laser Engineered Net Shaping (known as LENS) [52–54] is the prototypical powder-blown direct
energy deposition technique used for additive manufacturing. It often incorporates computer-controlled
lasers as power sources and produces near-net shapes with sufficiently accurate dimensions as the final
product [55] to eliminate the need for rough machining, making it popular in industry [52,53,56,57].
Due to characteristics such as its great reliability [53,54,58] and the low porosity [59–61] of the final
products, LENS is widely employed in the customization and repair of intricate mechanical parts,
including turbine blades [54,62–66]. The ability to control, independently, the powder flow from
separate powder feeders in LENS allows for creating chemical gradients in the AM components [67–72].
This is of tremendous interest for the present study, which aims to prototype a large library of material
samples of small volumes covering a range of alloy compositions and post-build heat treatments.

The binary Ti–xMn (x ranges from 0 to ~15 wt.% Mn) system was selected for this study.
Titanium–manganese alloys are of great interest because of their numerous applications in aerospace,
hydrogen storage and biomedical industries [73–75]. This range of manganese content in the alloy
introduces a typical eutectoid β-stabilized system [73,76,77] that is notoriously susceptible to the
segregation defect during solidification, known as “β-fleck” [78–81], and thus not suitable for traditional
ways of developing cast/wrought titanium alloys. AM has the potential to eliminate β-fleck by taking
advantage of the high thermal gradients and small molten pools, thereby reducing liquid-phase
separation. By eliminating β-fleck, it may be possible to subsequently increase the strength through
post-build aging heat treatments. An Optomec 750 LENS system was utilized to produce samples in this
work. Elemental powders of Ti and Mn were introduced into the molten pool using two independently
and automatically controlled powder feeders, one containing pure Ti and the other containing a mixture
of elemental Ti and elemental Mn with a composition of 15 wt.% Mn. These powders, after leaving their
powder feeders at preset feed rates, were mixed and focused into the molten pool by a multi-nozzle
system. A Nd:YAG laser system producing near-infrared radiation with a wavelength of 1064 nm was
focused coincident to the focal point of the powder, generating a local molten pool where melting and
mixing occurred. The motion of the build plate was then controlled so that thin layers of controlled
composition were deposited with predetermined width and thickness. The laser power at the molten
pool was 410 W, and the nominal flow rate of the powders was ~2.6 g/min. The substrate travel
speed (equivalent to the laser scan speed, but with a different reference frame) was 10 inch/min
(the nonstandard units of inches and minutes are used when describing build parameters, as these are
the standard units of the Optomec control system itself), and the hatch widths and layer thicknesses
were 0.018 inch and 0.010 inch, respectively. The oxygen content in the glove box was maintained
below 10 parts per million, with the balance being primarily argon gas.

Cylindrical samples with compositional gradients along their length were produced (see Figure 1a).
Planning for the potential loss of volume of material due to cutting/machining/sample preparation
(e.g., through the curfs of cuts), a small number of layers were programed to have the same composition
at the beginning and end of the depositions. As a result, the samples produced for this study showed
Mn content ranging from 0 to ~12 wt.% along the length. Three long strips (see the strip dimensions in
Figure 1b) were sectioned out of the cylindrical sample and were subjected to different aging treatments.
The aging treatments selected for the study included three different temperatures (500, 600 and 700 ◦C;
see Figure 1c), while the aging time was kept the same, at four hours. The post-build aging treatment
is expected to release residual stresses (these can be significant in the LENS technique due to the
high power of the energy source, subsequent high temperature of the melt pool, fast cooling process
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and high build rate) as well as significantly alter the phase volume fractions and phase morphology,
promoting possibilities of attaining improved properties.
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Figure 1. (a) Illustration of the layered Ti–Mn cylindrical sample manufactured by the Laser Engineered
Net Shaping (LENS) process in this study. (b) Sample strip sectioned from (a) with compositional
gradient along the length of the sample. Five locations were chosen longitudinally in each sample
strip for characterization. They were 8, 14, 20, 26 and 32 mm away from the pure titanium end of the
strip (labeled as #1–#5, respectively). (c) Three different sample strips were aged at three different
temperatures (500, 600 and 700 ◦C, respectively) for four hours to produce the sample library used in
this work. (d) A grid of indentation and microscopy characterization was performed at each location
illustrated in (b). Each circle represents an indentation testing site, while the square represents the
microscopy characterization site. Each measurement grid contained 5 by 5 indentation tests and the
same number of microscopy characterizations. The test points in the grid were evenly spaced at 100 µm.
Note all test sites shown in (b) are intentionally kept away from the thin end of the sample strips,
making sure the sample has at least 2 mm thickness at the indentation test sites.

After aging, all the sample strips were prepared for microscopy and spherical indentation
stress–strain measurements using standard metallography protocols established previously for titanium
alloys [82]. These included grinding (P240 and P1200 SiC papers), followed by polishing steps with
decreasing abrasive particle sizes (9, 3 and 1 µm diamond suspensions), while making sure every step
removed the surface deformation introduced by the previous step. A solution of 0.06 µm colloidal
silica suspension with hydrogen peroxide in the ratio of 5 to 1 was employed in a final polishing step
to produce the desired surfaces for microscopy and indentation.

The main focus of this study is exploring high-throughput experimental assays for exploring large
material spaces for AM. Five locations were selected longitudinally in each sample strip (see Figure 1b)
for microstructure characterization and indentation tests. The transverse directions on the sample
surface are not expected to exhibit any significant compositional gradients. Multiple indentation
measurements and back-scattered electron (BSE) imaging were performed on a 5 × 5 grid at each
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of the five selected locations (illustrated in Figure 1d). Indentation tests were performed on an
Agilent G200 (Santa Clara, CA, USA) with a continuous stiffness measurement (CSM) under a constant
strain rate of 0.05/s and 800 nm indentation depth. The CSM was set at a 45 Hz oscillation with
a 2 nm displacement amplitude [83]. A Tescan Mira XMH field emission SEM (Warrendale, PA,
USA) with a 20 kV accelerating voltage was used to capture back-scattered electron (BSE) images.
Energy dispersive spectroscopy (EDS) was performed at the five locations shown in Figure 1b to
measure the Mn content. At each location, five EDS measurements randomly distributed within the
5 × 5 grid (established in Figure 1d) were performed. Each measurement was carried out by first
mapping the element concentration distribution of a 50 µm × 50 µm area and then calculating the
average element composition according to the map. A Hitachi SU8230 SEM (Tokyo, Japan) equipped
with Oxford EDAX and Aztec analysis software was used for EDS analysis. Beam calibrations with a
100% copper plate were used for EDS quantification. The accelerating voltage was kept at 20 kV and
beam intensity at 20 µA for these measurements.

2.2. Microstructure Analysis and Quantification

The two-phase BSE images were segmented with Otsu’s method [84,85]. Otsu’s method separates
the intensity distribution of an image into two classes by using a threshold. The threshold value
is determined to maximize the interclass variance (or minimize the intraclass variance). Otsu’s
thresholding was performed using the “graythresh” function of the numerical computing software
MATLAB [86]. The segmented (binary) images were used to compute the volume fraction of the
β phase. Additionally, averaged chord lengths (CL) [87,88] were computed to quantify the length
scales of the α and β phase regions in the microstructure. The procedures used to identify the chords
are based on pixelized representations of the images and have been described in prior work [87,89].
A chord is defined as a line segment (measured as the number of pixels) that completely lies inside
a distinct material phase, whose extension in any direction by even one pixel encounters pixels of a
different material phase.

2.3. Mechanical Characterization

The spherical indentation stress–strain protocols [90–92] employed in this study are built largely
on Hertz’s theory [93,94] for elastic frictionless contact between two isotropic bodies with parabolic
surfaces (see Figure 2a). The relevant relationships are summarized below:

P =
4
3

Ee f f Re f f
1/2he

3/2 (1)

a =
√

Re f f he =
S

2Ee f f
(2)

1
Ee f f

=
1− v2

i
Ei

+
1− v2

s
Es

(3)

1
Re f f

=
1
Ri

+
1

Rs
(4)

where P and he denote the indentation load and elastic indentation displacement, Ee f f and Re f f denote
the effective modulus and the radius of the indenter-sample system, subscripts i and s correspond
to the indenter and the sample, and the Young’s modulus and Poisson’s ratio are denoted as E and
ν. In Equation (2), S (= dP/dhe) denotes the elastic stiffness (also known as the harmonic stiffness in
continuous stiffness measurement (CSM) protocols [83,95,96]). Building on these relationships, one can
define the indentation stress, σind, and the total indentation strain (includes the elastic and plastic
strains), εind, as

σind =
P
πa2 (5)
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εind =
4

3π
hs

a
(6)

where hs is the corrected sample displacement (subtracting the displacement in the indenter, hi, from the
total displacement, h) and is computed using

hs = h−
3
(
1− v2

i

)
P

4Eia
(7)
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Figure 2. (a) Illustration of spherical indentation. (b) Indentation stress–strain curve acquired from
Location #4 (see Figure 1b) of the strip heat treated at 700 ◦C. The slope illustrated in the elastic
portion of the indentation stress–strain curve is the effective modulus, Ee f f . The red dot represents the
indentation yield strength Yind corresponding to a 0.002 offset indentation plastic strain, while the black
segment (from 0.005 to 0.02 in offset indentation plastic strain) represents the data used to estimate the
indentation work hardening rate Hind.

The indentation stress and indentation strain defined in Equations (5) and (6) exhibit a linear
relationship in purely elastic indentations, where the slope of the indentation stress–strain curve is
referred to as the indentation modulus, Eind. For an isotropic material, the indentation modulus and
the Young’s modulus are related as

Eind =
Es(

1− ν2
s

) (8)

On the indentation stress–strain curve (see Figure 2b), a 0.2% offset indentation plastic strain
is used to define the indentation yield strength, Yind. The indentation stress–strain curve between
the 0.5% and 2% offset indentation plastic strains is fitted with a linear regression [82,97] to compute
the indentation work hardening rate, Hind. In prior work [82,91,98,99], Equations (5) and (6) were
demonstrated to produce meaningful elastic–plastic indentation stress–strain curves that show an
elastic–plastic regime following an initial elastic regime (see Figure 2b).

In the present study, spherical indentations on a 5 × 5 grid were performed with a uniform spacing
of 100 µm (see Figure 1d). A diamond indenter tip with a nominal radius of 100 µm was used in all the
tests reported in this work. Each indentation produced a contact area of about 150 µm2 (contact radius
of roughly 7 µm) at indentation yield and hence reflected the effective response of the two-phase
microstructures obtained in the sample library (micrographs presented later). The spacing between
indentations was designed to be large enough to minimize the interference between neighboring
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indentations. However, it was also important to keep the spacing small enough so that the compositional
variation between the indentation locations within each grid was very small.

2.4. Gaussian Process Modeling

In this study, Gaussian process regression (GPR) was employed to establish quantitative
correlations between various measured quantities of interest in the extracted dataset. GPR is a
nonparametric machine learning method that employs joint probability distributions to the available
training data (usually a small dataset) in order to make probabilistic predictions for new inputs. This is
accomplished by treating the correlations as a Gaussian process (GP) defined by only its mean and
variance. Let t = {t1, t2, . . . , tN} and y =

{
y1, y2, . . . , yN

}
denote the target and prediction, respectively,

where N denotes the number of training points. Then, the relationship between the target t and
prediction y can be written as

t = y + ε (9)

where ε is a column vector containing the residuals of N observations. A GP governing the joint
distribution between the predictions can be written as

y(x) ∼ N
(
µ(x), K

(
x, x

′
))

(10)

where x denotes a 1×D input vector, and µ(x) and K
(
x, x

′
)

represent the mean and the covariance of
the GP, respectively. In Equation (10),N() denotes a multivariate Gaussian distribution.

The covariance of the GP is generally computed using a kernel function k
(
x, x

′
)
. In the present

study, the %Mn and the post-heat treatment temperature are treated as the two (i.e., D = 2) independent
variables (i.e., inputs) for the model-building effort in this study. The outputs for the study will include
a number of microstructure statistics as well as the measured mechanical properties. The automatic
relevance determination squared exponential (ARDSE) [100–102] was selected as the kernel for
computing the covariance matrices. This ARDSE kernel is mathematically expressed as

k
(
x, x

′
)
= σ2

f exp

−1
2

 (xT − x′T)
2

l2T
+

(xc − x′c)
2

l2c

+ σ2
nδxx′ (11)

where σ f , lT, lc and σn are the hyperparameters that control the fidelity of the GP model, and the
subscripts T and c refer to the two input variables (i.e., the post-heat treatment temperature and
%Mn). The hyperparameters in the kernel provide more valuable information about the trends
and relationships between the inputs and the outputs, especially when compared to conventional
correlation techniques such as the Pearson correlation coefficient [103]. More specifically:

(1) σ f is called the output scaling factor and determines the variance of the output values. A higher
value of σ f indicates that the values of the output are widely spread. The ratio of σ f to the output
noise σn (discussed later) determines the uncertainty of the predictions made from the GP model.

(2) lT and lc are the interpolation length scale parameters associated with the two input variables
and capture the sensitivity of the output variable to the changes in the respective input values.
Lower length scale values exhibit shorter memory, leading to sharper fluctuations and more
complex nonlinear mapping between the inputs and the output. In other words, lower values of
the interpolation length parameter indicate a higher sensitivity of the output to the input value
(for the selected input variable). Conversely, larger values of the interpolation length parameters
indicate low levels of correlation between the output and the corresponding input variable.

(3) σn is called the output noise hyperparameter and captures the variance in the training data.
For the present study, where the training data are obtained from experiments, this variance can
arise from variations in the execution of the experimental assays themselves or variations in the
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application of the analysis protocols (e.g., image segmentation). σn is assumed to be the same for
the entire input domain (also called homoscedasticity [104]).

The hyperparameters in Equation (11) are generally optimized to produce the most reliable
predictions for test data points. For this, one must formulate a conditional distribution of test points, t∗,
given the evidence of training points, t. Let the train and test datapoints be represented by matrices X
and X∗ of sizes N ×D and N∗ ×D, respectively, where N∗ reflects the number of test points. The overall
covariance matrix can be partitioned as

C =

[
K(X, X) k∗(X, X∗)

k∗†(X, X∗) K∗(X, X)

]
(12)

where † represents the transpose. Each term of the covariance matrix in Equation (12) is computed
using the kernel function from Equation (11). The predictive distributions for the test points, given the
training points, can be expressed as [100,101].

µ∗ = k∗†K−1t
Σ∗ = K∗ − k∗†K−1k∗

(13)

where µ∗ and Σ∗ denote the prediction means and variances (i.e., uncertainty), respectively, for the test
points. The central challenge in the computations described in Equation (13) comes from the need
to perform an inverse on the N ×N covariance matrix of the training points, which requires O

(
N3

)
computations. Once K−1 is obtained, predictions for the test points can be realized through standard
matrix multiplication/addition operations, which require only O

(
N2

)
computations [100,101]. Note,

also, that in the applications explored in this work, the number of data points is quite small. Therefore,
the one-time computational cost of the inversion operation in Equation (13) does not represent a major
challenge for the present study.

3. Results

Figure 3a shows a typical BSE micrograph taken from a location approximately 14 mm away
from the pure titanium end of the sample strip aged at 500 °C. In this micrograph, the lamellated
hcp (hexagonal closest packing) α-Ti and bcc (body-centered cubic) β-Ti are visible as the darker and
brighter regions, respectively. The EDS measurements also show less than 1 wt.% of manganese for
the darker phase and about 15 wt.% of manganese for the brighter phase, thereby identifying these
regions as α and β titanium, respectively. A map sum spectrum was also taken, measuring the average
manganese content at 5.8 wt.% for this scan. Similar measurements were carried out at each location
identified in Figure 1b for each sample strip (i.e., each composition–post-heat treatment combination).
The results are presented in Figure 3b. As expected, it is seen that the variation of the Mn content
along the strip is highly consistent between the different strips. The manganese composition rises from
the pure titanium end but peaks at about 20 mm and stays at about 12 wt.%. Note that this 12 wt.%
Mn is a little lower than the target composition of 15 wt.%. The maximum manganese composition is
present over a few millimeters at the end of the build, as programmed into the original motion control
source code. The deviations between the obtained local composition and the targeted composition
are attributed to variations in the local elemental powder being fed or, as is the case here, due to an
intentional extension of a region with the maximum Mn concentration. Since our primary interest
in the present study is the development of a framework for establishing the correlations between
the processing parameters, microstructure statistics and the properties, we have not iterated with
different starting powder mixtures to attain specific compositions in the produced samples. Instead,
our focus will be on the protocols needed to acquire, efficiently, the material data needed for the
targeted correlations.
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Figure 3. (a) Back-scattered electron (BSE)-SEM image for the sample strip aged at 500 °C for four
hours and at the location where the Mn content was 5.8 wt.%. It depicts the dual-phase microstructure
of the sample, where the darker phase is α-Ti and the brighter phase is β-Ti. (b) Means and standard
deviations from the energy dispersive spectroscopy (EDS) measurements of the Mn content at the five
locations for all three high-throughput (HT) sample strips produced for this study. For clarity, all 500 ◦C
and 700 ◦C values are intentionally shifted slightly in the negative and positive x directions, respectively.
All points in each group correspond to the same nominal distance indicated by the axis ticks.

Multiple BSE micrographs were obtained corresponding to each combination of manganese
composition and post-heat treatment temperature. The volume fractions estimated from the segmented
images are shown in Figure 4. It is seen that the β volume fraction increased with Mn content
and with the temperature of the post-build aging treatments. This is because post-build aging at a
higher temperature pushes the microstructure to be close to its equilibrium state. Note that the high
manganese locations subjected to the low 500 ◦C treatment (see the bottom left micrograph in Figure 5)
produced a small-scale (10–100 nm) secondary α phase [33] in addition to the bigger (~2 µm) primary
α laths. Such secondary α is expected, especially at these lower temperatures, and results when new
nucleation events become more favorable and accelerate the rate of transformations.
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Figure 5. Segmented SEM-BSE images for the sample library produced and studied in this work.
The left, middle and right columns correspond to aging heat treatments of 500, 600 and 700 ◦C,
respectively. The rows correspond to different locations exhibiting different manganese compositions
(see Figures 1b and 3b). The black phase in these micrographs represents α-Ti, while the white phase
represents β-Ti.

For the computation of the averaged CLs, all the chords in the micrograph were collected at
intervals of 2.5 degrees to avoid imaging orientation bias. The averaged value of all the collected
chord lengths for each phase at each of the five sample locations identified is reported in Figure 6.
The averaged CL of the dominant β phase decreased consistently with an increase in the Mn content.
By contrast, the averaged chord length of the β phase increased with a higher manganese content,
with the higher aging temperature promoting a more drastic change.
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Figure 6. Averaged chord lengths (CLs) of (a) α phase and (b) β phase at the selected five locations for
all three high-throughput (HT) sample strips studied in this work.
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Spherical indentation tests were performed on a grid of twenty-five sites for each of the five
sample locations (see Figure 1b,d) for all three sample strips. Figure 7 summarizes the measured
values of elastic moduli, indentation yield strengths and indentation hardening rates at each of the five
locations on all three strips studied in this work. It is observed that the measured indentation moduli
did not show significant variations between different locations and between different sample strips.
On the other hand, a strong positive correlation was observed between the Mn content (which also
correlated well with the beta volume fraction (see Figure 4)) and the indentation yield strength as well
as the indentation hardening rate.
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Figure 7. Mechanical properties estimated from the spherical indentation stress–strain protocols:
(a) Young’s modulus, (b) indentation yield strength and (c) indentation initial hardening rate. The blue,
green and red boxes correspond to the 500, 600 and 700 ◦C aged strips, respectively.

It is clearly seen that the various microstructural features (β volume fraction and the averaged
CLs of the α and β regions) and the resulting mechanical properties are highly correlated with each
other. In order to analyze the effects of the process conditions (i.e., the aging temperature and Mn
content) on the microstructural features and the resulting mechanical properties, it is necessary to
conduct a statistical analysis. Gaussian process regression (GPR) was employed in this work for this
purpose. As mentioned before, the hyperparameters of the kernel function provide reliable insights
into the sensitivities of the different inputs to the outputs of interest.

A separate GP was built for each of the six outputs listed in Table 1, while using the post-build
aging temperature and Mn content as features (i.e., independent variables). Traditionally, GP models
are built to provide predictions for new inputs. However, in the present application, the size of the
dataset is too small to formally establish a reliable predictive model with rigorous cross-validation.
Therefore, it was decided to use the GP models to provide reliable insights into the sensitivities between
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the various measured quantities in this study. The interpolation length scale parameters established by
these GP models and summarized in Table 1 are ideally suited for extracting such insights. As a specific
example, it is seen that the interpolation length scale hyperparameter for the aging temperature in the
GP model for the averaged CL for the α phase is very large, especially compared to the corresponding
values obtained for the GP models for the other five outputs. This indicates a much lower sensitivity of
the averaged CL of the α phase to the aging temperature. In fact, the averaged β-CL and the indentation
hardening rate are found to exhibit the highest levels of sensitivity to the aging temperature. The table
also indicates that all the microstructural parameters exhibited strong sensitivity to the Mn content,
with the β volume fraction showing the highest sensitivity.

Table 1. Gaussian process regression (GPR) interpolation length hyperparameters and the mean
absolute percentage error (MAPE) for each of the six outputs selected for these models. CL denotes
the averaged chord length, VF is the volume fraction, Y is the indentation yield strength, and E is the
Young’s modulus.

GPR Results CL α CL β VF-β Y H E

lT 667.17 141.85 263.23 199.12 143.38 211.78
lc 10.95 10.48 9.39 16.83 14.78 12.49
σ f 19.52 18.47 0.55 2.48 53.97 92.17
σn 0.93 1.66 0.01 0.17 2.64 1.39

σ f /σn 20.88 11.13 45.59 14.50 20.41 66.10
MAPE 6.89 9.87 3.54 6.26 3.32 2.02

A comparison of the output scaling factor σ f , which controls the overall spread of the output values
in the entire dataset with the output noise parameter σn, provides insight into the combined overall
predictive capability of the GPR model. The ratio σ f /σn is referred to as the output-to-noise ratio and
reflects the capability of the selected inputs in influencing the predicted output. For example, a very
high value of σ f /σn obtained in a specific GPR model indicates that the selected inputs (i.e., the Mn
content and the aging temperature) are able to reliably account for most of the observed variations in
the selected output in the collected dataset. In other words, the GP models with high values of σ f /σn

are indeed more mature and can be used reliably in making predictions for new inputs. In Table 1, it is
seen that the GPR models for the elastic modulus and the β volume fraction show very high values of
σ f /σn, indicating that these models are able to account for almost all of the measured variations in
these quantities in the data aggregated in this work. Similarly, a low value of σ f /σn might suggest
a lack of adequate correlations between the selected inputs and the output. This could suggest that
there is inherently more noise in the measured values of the selected output, the possible existence
of as-yet-unidentified inputs influencing the output variable, or both. In Table 1, the lowest value of
σ f /σn was obtained for the averaged CL for the β regions. In this study, we believe this is because of
the inherent noise resulting from the protocols used to estimate this attribute from the micrographs
(i.e., the segmentation and CL protocols). In other words, if one intends to establish more accurate
correlations for the averaged CL for the β regions, it would be prudent to improve the protocols used
to extract this value.

Table 1 also summarizes the mean absolute percentage error (MAPE) using a leave-one-out
cross-validation strategy. This entails obtaining a model by setting aside one data point at a time
in establishing the GPR model and subsequently testing the obtained model on the excluded point.
The process is then systematically repeated for all available data points, and the MAPE is computed
based on the obtained errors. It is seen from Table 1 that the GPR model for the elastic modulus exhibits
the highest accuracy, while the GPR models for the averaged CL for the β regions exhibited the lowest
accuracy. It is also seen that this is consistent with the σ f /σn values.
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4. Discussion

Compared to the conventional assays, the high-throughput assays employed in this work required
significantly smaller material volumes. It should be noted that a total of 15 material conditions (obtained
by combining three different post-build aging heat treatments with five different compositions) were
produced and studied with relatively low overall effort and cost. In fact, the high-throughput (HT)
assays described in this work exhibit tremendous potential for further scale-up, allowing the rapid
evaluation of several hundreds of material conditions. In addition to requiring only small volumes
of the material, the time and effort needed for the proposed HT assays are also significantly lower
compared to those for the conventional assays. This is because the sample preparation steps only
require standard metallography protocols that are needed anyway if the material microstructure is to
be documented in such explorations.

As demonstrated in previous studies [37,39,82,105], the averaged values from the multiple
indentations summarized in Figure 7 provide reliable measures of the bulk properties measured in
standardized tests. The estimated Young’s moduli did not show clearly identified trends between the
different material conditions explored in this study, and fell in the range of 97–130 GPa. In general,
one might expect a decrease in the Young’s modulus with an increase in the β volume fraction, as the β

phase is expected to exhibit a lower elastic modulus compared to the α phase [106,107]. Although one
might be tempted to infer such a trend from Figure 7, it is not clearly evident, as the noise in the
measurements is of the same order as the overall variation among the tested samples. However,
the overall range of the values estimated in this work is comparable to the ranges published in the
literature [108,109] for similar compositions.

As seen in Figure 7, the indentation yield strengths and the indentation hardening rates in the early
stages of the imposed plastic deformation increased systematically with the increase in Mn content.
There is, as expected, a clear positive correlation between the indentation yield strength, the indentation
hardening rates and the Mn content. Strengthening due to secondary phase, solid solution strengthening,
and grain boundary strengthening are likely to contribute to the observed increase in the indentation
strength with the increase in Mn content. Based on prior work [110], the indentation yield strengths can
be converted to tensile yield strengths using a scaling factor of 2.0. Using this scaling factor, the tensile
yield strengths for the material conditions studied are expected to range between 828 and 1864 MPa,
which is among the highest ranges reported [108,111–113] for similar compositions. Interestingly,
the highest values were obtained for the samples with the highest Mn content and the lowest post-build
aging treatment. Indeed, the corresponding microstructures also showed a relatively high β volume
fraction of about 65% and highly refined microstructures with averaged CLs of 0.17 and 0.32 µm in the
α and β phases, respectively (see Figure 5). The refined length scales are also responsible for the high
indentation hardening rates measured in our experiments, because of the presence of a much larger
number of interfaces per unit volume of the material. The fact that our high-throughput protocols
easily identified the viability of obtaining a very high yield strength in the Ti–Mn alloys along with the
features identified in their microstructures clearly testifies to the unique benefits of our approach for
the rapid exploration of large material spaces.

5. Conclusions

Novel high-throughput assays have been proposed and demonstrated to rapidly explore large
material spaces reflecting the many combinatorial selections in material compositions and AM process
parameters such as post-build aging treatments. More specifically, this study successfully conducted
such an evaluation using Ti–Mn alloy systems processed by LENS, which allowed for the generation
of samples with controlled composition gradients. Combining this strategy with spherical indentation
stress–strain protocols allowed for a rapid exploration of the mechanical properties of the produced
samples in small material volumes. Most importantly, this rapid exploration revealed that a Mn content
of about 12% with a post-build heat treatment of 500 ◦C produced an unusually hard material with an
expected tensile yield strength of 1864 MPa. The dataset generated in this study was analyzed rigorously
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using GPR models. The use of these statistical approaches revealed that the use of the Mn content and
the post-build aging treatment as inputs does lead to reliable correlations with microstructure measures
such as the β volume fraction and the averaged CLs of the α and β regions, as well as their mechanical
properties such as the Young’s modulus, indentation yield strength and indentation hardening rate.
These correlations revealed the relative sensitivities of the different outputs to the selected inputs as
well as the high levels of inherent noise in the estimation of the averaged CLs of β regions. The GPR
models built with the limited data obtained in this work showed reasonable accuracy in leave-one-out
cross-validation. This study established the feasibility and value of employing GPR approaches in
the rigorous statistical analyses of the datasets produced in the proposed high-throughput assays for
material exploration.
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